DDoS attacks in CESNET2

Ondřej Caletka

1996–2016 **CESNET**

15th March 2016

(i) (i)

Ondřej Caletka (CESNET)

DDoS attacks in CESNET2

15th March 2016 1 / 22

association of legal entities, est. 1996

- public and state universities
- Academy of Sciences
- non-profit organisation
 - development and operation of NREN (CESNET2)
 - advanced network technologies and applications R&D
 - international cooperation GNx, GN3+, GLIF, EGI, GÉANT shareholder, EGI member, Internet2 affiliate member,...
- founding member CZ.NIC, NIX.CZ, FENIX

NREN specifics

- very well provisioned backbone
- big variation of legitimate traffic
- no filtering by default¹

Typical weekly traffic variation

DoS as a phenomenon

hobby of todays' teenagers

- spending allowances for DDoS-as-a-service
- targetting classmates' internet services
- especially gaming and TeamSpeak servers
- big issue especially for cheap VPS providers
- hacktivism
 - DoSing unpopular services
 - possible target later this year in CZ: on-line POS sales records collection
- shorter attack times (less than five minutes)
 - often undetected by monitoring tools
 - can break badly designed services
 - bad eyeball experience

Short-lived UDP flood example

la station de la companya de la comp		1.2 6
Notification : UDP from extern	al networks and port 0,53,123,161 to	internal IPS, 1.1 c
bytes>=1024, targets - DETECTED traffic anomaly		0.9 G
Detected 195,113	(dest TP) - found 878 (limit 250) f	lows within 0.8 G
period of E cocondo	(deset if) found of (iimite 200) f	0.7 G
period of 5 seconds		0.6 G
		0.5 6
Flows time range [GMT] : 15/12/17 09:33:	02-15/12/17 09:34:03	0.3 6
Eloue time range [local] : 15/12/17 10:22:	02-15/12/17 10:24:02	0.2 6
[FIDWS CINE Tange [IDCal] . ID/12/1/ 10.55.	02-15/12/17 10.54.05	0.1 6
		0.0 06:00 12:00
50.241.253.129 udp(17)/0> 195.113.	udp(17)/0 : 6113015 B,	5436 p, 1124.54286239882 Bpp,
186.215.207.138 udp(17)/0> 195.113.	udp(17)/0 : 4732764 B,	4694 p, 1008.2 <u>5820195995 Bpp,</u>
46.188.59.141 udp(17)/0> 195.113.	udp(17)/0 : 1576588 B,	1330 p, 1185.4 200 k
61.85.1.79 udp(17)/0> 195.113.	udp(17)/0 : 3466937 B,	3132 р, 1106.9 180 к
202.114.238.116 udp(17)/0> 195.113.	udp(17)/0 : 13477647 B, 1	1460 p, 1176.0 160 k
117.102.65.174 udp(17)/0> 195.113.	udp(17)/0 : 9227596 B,	7946 p, 1161.2 140 k
217.128.111.66 udp(17)/0> 195.113.	udp(17)/0 : 367793 B,	331 р, 1111.1 120 к
219.222.224.6 udp(17)/0> 195.113.	udp(17)/0 : 13262153 B, 1	.1194 p, 1184.7 100 k
163.29.216.61 udp(17)/0> 195.113.	udp(17)/0 : 4589202 B,	4038 p, 1136.5 80 k
96.90.226.11 udp(17)/0> 195.113.	udp(17)/0 : 2143761 B,	2038 p, 1051.8 🕫 k
112.160.7.249 udp(17)/0> 195.113.	udp(17)/0 : 952083 B,	819 p, 1162.4 40 k
219.223.18.20 udp(17)/0> 195.113.	udp(17)/0 : 13569874 B, 1	.1424 p, 1187.8 20 k
123.57.177.192 udp(17)/0> 195.113.	udp(17)/0 : 2836849 B,	2499 p, 1135.1 ° of 00 12:00
218.244.142.146 udp(17)/0> 195.113.	udp(17)/0 : 749959 B,	688 p, 1090.05668604651 Bpp,
24.111.41.107 udp(17)/0> 195.113.	udp(17)/0 : 5840435 B,	5325 p, 1096.79530516432 Bpp, ESNET
187.141.38.238 udp(17)/0> 195.113.	udp(17)/0 : 620221 B,	479 p, 1294.82463465553 Bpp,
00 407 000 440 udp(47) (0 > 105 440	uda (17) (0 , 0014051 D	7714 p 44EC 4040EE040E Dag

Ondřej Caletka (CESNET)

DDoS attacks in CESNET2

- using connection-less protocol and IP source spoofing for reflection/amplification attack
 - TCP SYN flood
 - DNS
 - NTP
 - SNMP
 - SSDP
- DNS random subdomain queries
 - using spoofed source IP or botnet and open resolvers
 - targets authoritative DNS servers
 - eating resources on recursive DNS servers

Why only few operators deploy BCP 38?

- the closer to the edge the simpler to deploy
- simple automatic urpf-checks don't work well with multihoming
- network equipment vendors still don't offer an easy to deploy solution for multihomed clients (Feasible Reverse Path Forwarding – BCP 84)
- loose RPF has no use against most spoofing attacks
- our solution: ACLs on customer ports
 - managed manually
 - prone to operator errors
 - probably too resource demanding for many ISPs

DoS experience in CESNET

• client router announces /16 but only /17 is routed

- packets to remaining /17 ping-pongs between routers
- last mile link saturated
- received UDP floods from transit can saturate target's 10Gbps link

Mitigation strategies in CESNET

RTBH for clients

- attacks targetted to small number of IP addresses
- without RTBH, the last mile link is easily saturated with malicious traffic
- BGP Flowspec-based RTBH in development
- per-protocol QoS on the network perimeter
 - for connection-less protocols like NTP, SNMP,...
 - sum of NTP flows typical ~2 Mbps
 - different packet sizes of legitimate and attack flows
- DNS QoS on the inner-egde of the core network
 - crucial service for eyeball experience
 - hard to recognize attack on the perimeter
 - filtering UDP packets without either port 53

The FENIX project of NIX.CZ

- response to DoS attacks to major websites in 2013
- attack sourced from transit carrier RETN via NIX.CZ
- no technical nor organisational countermeasures available inside the IXP at that time

Idea of secure peering VLAN inside NIX.CZ

- as a last resort in case of some massive attack
- only for those that trust each other
- so Czech users can access Czech services

founded by 6 operators in January 2014

- Active 24 (hosting)
- CESNET (NREN)
- CZ.NIC (TLD operator)
- Dial Telecom (ISP)
- O2 CZ (ISP, incumbent)
- Seznam.cz (Czech Google)
- 13 members today

FENIX criteria

- Terms and Conditions allowing to disconnect customer originating malicious traffic
- 24×7 NOC, no Interactive Voice Response machine
- Trusted Introducer listed CSIRT team
- recommendation from 2 FENIX members, no veto
- BCP 38/SSAC 004 network ingress filtering
- RTBH using route servers
- fully redundant connection to NIX.CZ
- protected BGP sessions with TCP MD5
- DNS, NTP, SNMP amplification protection
- deployed IPv6 and DNSSEC

- former work title for the FENIX
- separate peering VLAN of last resort
- accessible by FENIX members only
- prepared for island-mode of operation
- no data during peace time
- each member decides on their own when to use it

Ondřej Caletka (CESNET)

DDoS attacks in CESNET2

15th March 2016 16 / 22

Ondřej Caletka (CESNET)

DDoS attacks in CESNET2

15th March 2016 17 / 22

Ondřej Caletka (CESNET)

DDoS attacks in CESNET2

15th March 2016 18 / 22

Key concepts of FENIX VLAN

- only prefixes guaranteed to be clean of spoofing can be announced into FENIX VLAN
- public peering VLAN used for everything by default
- once a FENIX member decides to switch to island mode, they disconnect all other peerings – traffic flows only from/to other FENIX members via the FENIX VLAN
- instead of disconnecting, malicious traffic could be blackholed or sent to a scrubber/filter device

CESNET mission in FENIX

- we believe in FENIX principles
 - which brings benefits to every single network
- we are pushing our clients to adopt similar rules
 - IP spoofing protection do not rely on upstream to do the filtering
 - amplification attack protection
 - incident handling
- we do our best not to source or support any attack
 - as we could be dangerous to other networks
- we offer tools for monitoring clients' networks –
 Security Tools as a Service

Conclusion

DDoSes are more and more common

- shorter attack times make them harder to mitigate
- the future is probably in *automatic DDoS mitigation*

FENIX-like communities very useful

- consensual view
- mutual help and assistence
- sharing best practices
- o personal trust

• higher standards make networks more reliable

- avoids possible goverment regulation
- making the whole industry a better place

Thank You!

Ondřej Caletka Ondrej.Caletka@cesnet.cz https://Ondřej.Caletka.cz

https://www.ces.net http://fe.nix.cz/en

Ondřej Caletka (CESNET)

DDoS attacks in CESNET2