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DNS resolver reputation?

● Identify anomalous sources of DNS queries

● What is an anomaly?

● Hard to define
– Scanners?
– Monitors?
– Misconfigured resolvers?

● Unusual behaviour



  

Data flow



  

Data aggregation

1) Group DNS queries by source IP address

2) For each source IP address compute statistics (features)

● Take only IP addresses which send min. 100 queries daily
● Time window = 1 day



  

Features #1

● Entropy (normalised Shannon Index)

● Source port
● Transaction ID

● Coefficient of variation (CV=σ/μ)

● Idletime
● Packet length



  

Features #2

● Amplification factor

● Mean domain name length

● Domain name diversity



  

Features #3

● Observed DNS QTYPEs

● A + AAAA
● NS
● DNSSEC RRs
● Popular RRs
● Weird RRs



  

Features #4

● Observed DNS RCODEs

● NOERROR
● NXDOMAIN

● Observed DNS FLAGs

● RD
● EDNS0 DO



  

Features #5

● Observed DNS QCLASSes

● IN

● Observed DNS OPCODEs

● QUERY



  

Features – an example

● 217.31.204.130 on 23 October 2018 

(CZ.NIC open DNS resolver)

srcp_sh_ix_n        0.9876179
id_sh_ix_n          0.9879639
idletime_cv         0.709647
dn_len_mean         11.57786
dn_perc             0.292901
rcode_noerror_perc  0.9828929
rcode_nxdomain_perc 0.01710712
qtype_common_perc   0.975649
qtype_weird_perc    0.001121778
qtype_dnssec_perc   0.1577407
qtype_ns_perc       0.01025492
qtype_addr_perc     0.9247106
qclass_in_perc      1
edns_do_perc        1
flag_rd_perc        0
ampl_factor         4.743633
len_cv              0.1132715
opcode_query_perc   1



  

Anomaly detection concept
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Anomaly detection concept



  

Model

● Spark MLlib

● K-means clustering

● UDF to compute distance from cluster center

● MinMaxScaler

● Entire dataset used for scaling (some features in training set were 
meaningful but had “near zero” variance)



  

Model

● Training set

● Real DNS resolvers (each RIPE Atlas probe was employed to query 
its local DNS resolver for whoami.akamai.net)

– Gathered 3 430 unique IP addresses
– 51 days = 137 701 observations
– Filtered out weird observations



  

Model

● Test/Validation set

● Difficult to measure anomaly detection performance
● Needed for grid search to select best model parameters (best F-

score)



  

Model

● Test/Validation set #1

● Real DNS resolvers
– DNS resolvers of RIPE Atlas probes
– Google Public DNS
– Cloudflare
– Quad9
– OpenDNS (Cisco)
– Dyn
– Level3
– Yandex
– CZ.NIC



  

Model

● Test/Validation set #2

● Known anomalies
– DNSMON
– Domain name scanners
– Misconfigured DNS resolvers



  

Model

● Model parameters

● k = 13
● Threshold (maximal distance from cluster center) = 3 * Q3

(third quartile)



  

Model performance

● Real DNS resolvers

 F-score: 0.9894033

 dataset          total anomaly %anomaly
 atlas_resolvers  3193      48  1.5 % 
 google           1250       0  0.0 %      
 quad9             224       0  0.0 %      
 opendns           107       2  1.9 %       
 dyn               107       3  2.8 %       
 level3            160       4  2.5 %       
 cloudflare        180       2  1.1 %       
 yandex             82       2  2.4 % 
 cznic               2       0  0.0 %



  

Model performance

● Known anomalies

 F-score: 0.9894033

 dataset          total anomaly %anomaly
 dnsmon             38      38  100.0 %     
 scanners           25      25  100.0 %     
 scanners2         100     100  100.0 % 
 misconfigured      99      99  100.0 %     
 dnsviz              1       0  0.0 % 



  

Results

● DNS traffic from 11 Sept 2018 - 31 Oct 2018

● 737 729 out of  9 918 267 observations (7.4%) 

were classified as anomaly 
● 8 649 294 465 out of 40 073 507 471 queries (17.7%)

were originated in anomalous source



  

Results

(based on DNS traffic from 11 Sept 2018 – 31 Oct 2018)

Anomalous sources by country (only countries with >1000 observations)



  

Results
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Findings

● A security issue with one of the DNS operators 

(details to be disclosed later)



  

Findings

● AS25192 (CZ.NIC, z.s.p.o.)

● 5th biggest in terms of query number
● 2 496 observations (128 unique IP addresses)

– 525 (21 %) classified as anomaly (22 unique IP addresses)
● 1 731 755 782 queries

– 87 432 646 (5 %) from anomalous sources



  

Findings in AS25192 (CZ.NIC, z.s.p.o.)

● 32 out of 128 IP addresses were observed every day

● 19 were never anomalous (0%)
● 5 were almost never anomalous (<5%)
● 7 were always anomalous (100%)
● 1 was almost always anomalous (>90%)



  

Findings in AS25192 (CZ.NIC, z.s.p.o.)

● Always classified as anomaly (100%)

● Incigna monitoring system (IPv4+IPv6)
● Domain name crawler
● RIPE Atlas anchor (IPv4 + IPv6)
● A monitoring system without name
● DNS resolver for Hadoop cluster (IPv6)

● Almost always classified as anomaly (>90%)

● DNS resolver for Hadoop cluster (IPv4)



  

Findings in AS25192 (CZ.NIC, z.s.p.o.)

● Never classified as anomaly (0%)

● Real DNS resolvers

● Ocasionally classified as anomaly (<5%)

● DNS resolver for mail server
– A configuration issue was discovered

● NAT gateways



  

Future work

● Add more classes

● Scanner, monitor, misconfigured, under attack, etc.

● Extend / modify feature set

● Try different algorithms

● Collect better ground truth

● Visualise results



  

Thank You

Maciej Andziński  •  maciej.andzinski@nic.cz
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