The EFF SSL Observatory

Peter Eckersley Jesse Burns
@ EFF CENEHEINEES

An EFF mission

Turn the unencrypted web of 2009

into the encrypted web of ~2012-13

Our contributions

Hassle sites to support https://
HTTPS Everywhere
SSL Observatory
Decentralized Observatory

Other stuff

Our contributions

Hassle sites to support https://
HTTPS Everywhere
SSL Observatory
Decentralized Observatory

Other stuff

So, HTTPS will save the web

but...
encryption security

<

ability to identify the other party

HTTPS uses certificates

Certificate Authorities (CAs) say
"this key belongs to mail.google.com”

(browsers trust the CAS)

We are afraid of CAs because:

2009: 3 vulnerabilities due to CA mistakes
2010: evidence of governments compelling CAs
2011: more exploits against CAs

Generally: too many trusted parties!

Also afraid of X.509

Designed in 1980s
By the ITU (!), before HTTP (!!!)

extremely flexible & general
extremely flexible & general

extremely ugly
history of implementation vulnerabilities

X.509: Security via digital paperwork

X.509 certs can (and do) contain JUSt
about anything

What to do about it?

1. Write alternative browser code?
2. Study CA behaviour and detect problems

1 is hard - let's do 2 first

S
% '-..\ " 70\

ot "*
P

- 4
-]
"'.“*I Y
’ :
%

Y
EFF SSL Observatory

Scanned all allocated IPv4 space

(port 443)

N

Built a system for analysing the data

Various results presented at DEFCON 2010,
27C3 e

This talk:

Brief overview of previously reported results
Hints on using our datasets

Details on forthcoming Decentralised
Observatory

Size of the SSLiverse

16.2M IPs were listening on port 443
11.3M started an SSL handshake
4.34+M used valid cert chains
1.5+M distinct valid leaves

Lots of CAS!

1,482 CAs trustable by Microsoft or Mozilla
1,167 disinct Issuer strings
651 organisations

Noteworthy subordinate CAs

U.S. Department of Homeland Security
U.S. Defence Contractors
CNNIC, 2007 (why debate their root CA?)
Etisalat

Gemini Observatory

Exposure to many jurisdictions

CAs are located in these ~52 countries:

['AE', 'AT', 'AU', 'BE’, 'BG', 'BM’, 'BR', 'CA', 'CH', 'CL', 'CN/,
'CO', 'CZ', 'DE', 'DK, 'EE', 'ES', '"EU", 'FI', 'FR", 'GB’, 'HK',
'‘HU', "IE', 'IL', "INY, 'ISY, T, JPY, 'KRY, LT, 'LV, ‘"MK, 'MOY,
'‘MX', '"MYY, 'NLY, 'NO', 'PL', 'PT', 'RO', 'RU", 'SE', 'SG', 'SI,

'SK*, "'TN', 'TR', "TW', 'UK', 'US', 'UY', 'WW', 'ZA']

Vulnerabilities

~30,000 servers use broken keys
~500 had valid CA signatures, including:
diplomatie.be

yandex.ru

lawwebmail.uchicago.edu

(now fixed/expired)

Other whackiness

Certificates that were and were not CA certs

”n ”n

Lots of certs for "localhost”, "mail” and
various IPs

Violations of Extended Validation rules

The data

Info at

Available in an Amazon EC2 snapshot

(or on your own machine, but...
4GB download / 12 GB MySQL DB
~10 hours to import on a fast PC)

https://www.eff.org/observatory

The database schema is fairly baroque.

In part: blame X.509
In part: only 2.5 of us

But let's show you how to use it!

Hard way to get the data:

get the torrent file from https://www.eff.org/observatory
bittorrent ssl-database-paths-fixed-ext.sgl.lzma.torrent

mysqgladmin -u root -p create observatory

unlzma -c ssl-database-paths-fixed-ext.sqgl.lzma | mysql -u root -p
(~ 10 hours later)

now you have a database of certs

Easy way to get the data:

Use Amazon EC2

https://www.eff.org/observatory/cloud

Main db tables

valid certs } Indexed by certid or
all certs } fingerprint (SHA1)
names } Common Names + Subject
anames } Alternative Names -> certids

certs seen: maps (time, IP) -> fingerprint

(also stores chain order)

SELECT "Signature Algorithm , count (*)
FROM wvalid certs

WHERE startdate > "2010"

GROUP BY Signature Algorithm ;

mdbWithRSAEncryption
shalWithRSAEncryption
sha256WithRSAEncryption
shabl2WithRSAEncryption

Caveats...

Some fields (name, IP) in the certs tables
are correct but not comprehensive

SELECT count (distinct ip) FROM all certs -- 5,536,773
SELECT count (distinct ip) FROM seen --11,373,755

(the former undercounts due to certs seen on multiple IPs)

some columns have unintuitive semantics;
moz_valid, ms_valid are the outputs of:

openssl verify -CApath <roots> -untrusted <rest of chain> cert ; eg:

Yes

Yes

self-signed: OK

self-signed: /CN=sw-mhs-ser-3750-1./unstructuredName=sw-mhs-ser-3750-1. error 10

at 0 depth lookup:certificate has expired OK
Yes

Yes

self-signed: in certificate chain

self-signed: OK

No: 'stdin: /C=US/ST=Default State/L=Default Locality/O=American Power
Conversion Corp/OU=Internally Generated Certificate/CN=ZA0535013730\\n
error 20 at 0 depth lookup:unable to get local issuer certificate\\n'None

So:

select count (*) from valid_certs where moz_valid="Yes” —-1,359,292
select count (*) from valid_certs where not moz_valid="Yes” = 174,067

select count (*) from valid_certs where not ms_valid="Yes” 213,401

Even worse...

Firefox and IE cache intermediate CA
certificates...

So OpenSSL can't necessarily say whether a
cert is valid in these browsers (!!!)

"Transvalidity”

valid, but only if the browser cached the
right intermediate CA certs first

—

we catch all / almost all transvalid certs

explaining transvalidity.py

First, find invalid certs where a plausible, valid intermediate cert was seen somewhere in
the SSLiverse:

SELECT certsl.path, certsl.id, valid_certs.path, certsl.fingerprint,
certsl.fetchtime

FROM certsl join wvalid_certs

ON certsl.issuer = valid_certs.subject and (
(certsl. Authority Key Identifier:keyid is null and
valid_certs. Subject Key Identifier is null)

or

certsl. Authority Key Identifier:keyid =
valid_certs. Subject Key Identifier’

)

WHERE not certsl.valid and
(locate ("unable to get local issuer certificate", certsl.moz_valid) or

locate ("unable to get local issuer certificate", certsl.ms_valid))
GROUP BY certsl.fingerprint, valid_certs.path

Note: some variable names were simplified in this query:
certsl is an example raw input certs table, Authority Key IDs have longer column:names

transvalidity.py (ct'd)

Once we have some missing, valid, possibly determinative
CA certs, we re-run OpenSSL.:

openssl verify -CApath <all roots> -untrusted <rest of chain + query results> cert

Results go in the "transvalid” column

select count (*) from valid certs where transvalid="Yes"

— 97,676 tranvalid certs

Validity in general

boolean valid = (moz_ vali
or ms_vall

or transvali

Which root CAs created the most
subordinate CAs? SubordinateTracking.py

For each root cert:

SELECT certid, subject, issuer, Subject Key Idenfier

FROM valid_certs where issuer = <root CA's subject>
and locate ("true”, X509v3 Basic Constraints:CA)

and "X509v3 Authority Key Identifier:keyid’ = <root CA's SKID>
(which may be NULL)

(and recurse)

Results: top roots by CA proliferation

1. C=DE, CN=Deutsche Telekom Root CA 2
252 sub-CAs (4,164 leaves)

2. C=US, CN=GTE CyberTrust Global Root

93 sub-CAs (20,937 leaves)
3. C=SE, CN=AddTrust External CA Root

72 sub-CAs (384,481 leaves)
4. C=BE, CN=GlobalSign Root CA

63 sub-CAs (140,176 leaves)
5. C=US, CN=Entrust.net Secure Server Certification Authority

33 sub-CAs (91,203 leaves)
6. C=FR, O=PM/SGDN, OU=DCSSI, CN=IGC/A...

24 sub-CAs (448 |leaves)
7. OU=ValiCert Class 3 Policy Validation Authority

20 sub-CAs (1,273 leaves)
8. O=VeriSign, Inc, OU=Class 3 Public Primary Certification Authority

18 sub-CAs (312,627 leaves)

Extended Validation

Great idea: Certs become reliable again

Stricter rules like:

Owners exclusively own domains
Use relatively strong keys
ldentifiable Owners
Audits

http://cabforum.org/EV_Certificate_Guidelines.pdf

Extended Validation

Special OID per CA
Chromium Source documents:
ev root ca metadata.cc

EV's Per CA OIDs

src.chromium.org

o C @ src.chromium.org

#$if defined| CI-.E'-_I'IIH }
ff static

il
i 132
i 132
i 139
”1.
il
il
i 132
i 132
i 137
”1.
il

"o

N O L
.1.100.1",
I Bt B

T Y Y N Y Y Y Y S A
R B I I S S ey

=
"2
=2
=2
=3 .114171.
.114404.
.114412
.114413.
.114414.

"o
"o

"
£

N N N N Iy

"
<

T
r

fendif

EV hints via ugly where clause

locate ("

(
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (
locate (

N O O O N N N N N e e e e e e e e

WWWWWWWWWWWW

O O) O) O) O) O) O) O) O) O) O)Y O

sl

PR R RR R R

T T Y T N N A A

BS) AL
T D)61,
.840.
.840.
.840.
.840.
.840.
.840.
.840.
.840.

PR R R RR R

"X509v3 Authority Key Identifier’
(locate ("1.2.392.200091.100.
locate ("1.

LoD

is null and

721.1:", "X509v3 Certificate Policies:Policy) or
.1.14370.1.6:", "X509v3 Certificate Policies:Policy) or
1.22234.2.5.2.3.1:", "X509v3 Certificate Policies:Policy) or
1.23223.1.1.1:", "X509v3 Certificate Policies:Policy) or
1.34697.2.1:", "X509v3 Certificate Policies:Policy) or
1.34697.2.2:", "X509v3 Certificate Policies:Policy) or
1.34697.2.3:", "X509v3 Certificate Policies:Policy) or
1.34697.2.4:", "X509v3 Certificate Policies:Policy) or
1.4146.1.1:", "X509v3 Certificate Policies:Policy) or
1.6334.1.100.1:", "X509v3 Certificate Policies:Policy) or
1.6449.1.2.1.5.1:", "X509v3 Certificate Policies:Policy) or
1.782.1.2.1.8.1:", "X509v3 Certificate Policies:Policy) or
1.8024.0.2.100.1.2:", "X509v3 Certificate Policies:Policy) or

.6.1.1.1:", X509v3 Certificate Policies:Policy)or

.89.1.2.1.1:", "X509v3 Certificate Policies:Policy) or
.113733.1.7.23.6:", "X509v3 Certificate Policies:Policy) or
.113733.1.7.48.1:", "X509v3 Certificate Policies:Policy) or
.114028.10.1.2:", "X509v3 Certificate Policies:Policy) or
.114171.500.9:", "X509v3 Certificate Policies:Policy) or
.114404.1.1.2.4.1:", "X509v3 Certificate Policies:Policy) or
.114412.2.1:", "X509v3 Certificate Policies:Policy) or
.114413.1.7.23.3:", "X509v3 Certificate Policies:Policy) or
.114414.1.7.23.3:", "X509v3 Certificate Policies:Policy))

Finding EV problems with the
Observatory

About 33,916 EV certs this time
with 38 issuers

Not all unique, not all really used.

Extended Validation problems
found by the Observatory

RFC-1918 Addreses
Unqgualified Names...
Localhost?!?
Weak (512 bit) keys
Long expiration

Future Work

1. A decentralised observatory

2. The question of how to reinforce the CA
system more generally

Decentralised Observatory Objectives

1. Detect MITM attacks
= even if only the victim gets the cert

2. Protect user privacy
= never know who looks at which site

Decentralised Observatory Design

1. User has Tor running

2. Send raw certs to Observatory
= asynchronosly
= via Tor for anonymity, w/ exit enclave

3. Warn users about phishy CA signatures?
= yes
= not until a few seconds later :(
= better late than never

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

